Leg Pain in the Athlete

Matthew Handling

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

40 ♀ c/o soreness L leg

- New Year’s resolution to join gym & run 3x’s/wk
- Pain started in beginning of February
- Dull ache when first gets on treadmill, goes away after 10 minutes
- Seems to be getting worse

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

20 ♀ student c/o soreness L leg

- Tender posteromedial border tibia
- Pain reproduced when does multiple toe raises
- No pain PROM
- XR normal

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

Shin Splint Syndrome

- AMA Subcommittee on Classification Sports Injuries, 1966

“condition that produces pain and discomfort in the leg owing to repetitive running or hiking”

Limit to musculotendinous inflammations, excludes stress fxs & ischemia
Medial Tibial Stress Syndrome = “Shin Splints”

• Symptoms
 – Early
 • Dull ache, soreness on initial exertion
 • Relieved with continued running
 – Advanced
 • Sharp, penetrating pain
 • Can extend through entire time of exertion
 • ADLs

MTSS (Shin Splints)

• Risk Factors
 – Unconditioned individual who begins training
 – Changes in footwear
 – Changes in running terrain
 – Increased intensity of workout
 – Females

MTSS (Shin Splints)

• Clinical
 – Tenderness along the posteromedial border of the tibia
 • From 4cm above medial malleolus to 12cm
 • One third of the tibia is tender, centered over junction of middle & distal 1/3’s
 – Slight swelling
 – Pain with active resisted plantarflexion
 – No pain with P or AROM ankle/foot

MTSS (Shin Splints)

• Studies
 – X-ray typically normal
 • Hypertrophy posterior cortex tibia
 • Subperiosteal lucency & scalloping on anterior or medial side tibia
 • Faint periosteal reaction
 – Periostitis vs Stress fracture

MTSS (Shin Splints)

• Studies
 – Bone Scan
 • Angiogram & blood pool phases always normal (Phase I & II)
 • Delayed Images show moderate ↑radionucleotide activity
 – along posteromedial border tibia
 – ¼ to 1/3 bone involved (stress fx will be <1/5)
 – MRI: Sensitive & specific

MTSS (Shin Splints)

• Proposed Etiology
 – Posterior Tibialis overload
 • Anatomically, tenderness corresponds to origin
 • Stress fractures of tibia → Ruled out with bone scan
MTSS (Shin Splints)

- Proposed Etiology
 - Posterior Tibialis overload
 - Deep posterior compartment syndrome →
 - tends to get better with exercise
 - Compartment pressures normal <Mubarak SJ, 1982>

- Proposed Etiology
 - Posterior Tibialis overload
 - Medial origin of soleus
 - Anatomic correlation of bone scans & tenderness with soleus origin
 - Biomechanics <Messier SP, 1988>
 - associated with higher maximum pronation velocity & degree pronation
 - Association with heel cord tightness

MTSS (Shin Splints)

- Biomechanics of running
 - Initial contact
 - Lateral aspect of the foot makes contact
 - Tibia is externally rotated
 - As stance phase progresses
 - Tibia internally rotates
 - Eversion of subtalar joint occurs to compensate resulting in pronation of foot
 - Eccentric contraction of medial soleus (an invertor of the calcaneus)

MTSS (Shin Splints)

- Treatment
 - Relative rest
 - NSAIDs 2 weeks
 - Theoretically to decrease periostitis
 - Heel cord stretching & strengthening posterior muscles
 - Naval Academy cadets
 - No combination of NSAIDs, stretching, heel pads, or casting was better than rest alone

MTSS (Shin Splints)

- Treatment
 - Footwear adjustments
 - Avoid wide heel (↑’s pronation velocity)
 - Hindfoot varus → medial heel wedge
 - Hindfoot valgus → heel cup
 - Excessive pronation → orthotic
MTSS (Shin Splints)

- Treatment recalcitrant shin splints (2-3 times)
 - <Yates, JBJS, 2003>
 - 46 patients treated surgically
 - middle-distal inner tibial border
 - "soleus bridge" thick fascia of deep posterior compartment incised at bone interface
 - removed 2cm strip of periosteum
 - compartment pressures normal, + bone scan, conservative tx 12mos
 - F/U 30mos
 - visual analog pain score & level of activity 69% Excellent/good, 41% at pre-symptom LOA
 - <Detmer DE, 1986> 78% described themselves as cured
 - 29-66% in literature

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

Tennis Leg

- Symptoms
 - Middle-aged athlete, ♂>
 - Acute pain in calf while running or making sudden stop, "kicked in back of leg"
 - Pain & swelling increase over next 24hrs

Tennis Leg

- Clinical
 - Tenderness well-localized to medial head gastrocs (musculotendinous junction)
 - Duplex can be used to distinguish from thrombophlebitis
 - Direct compartment pressure measurement if pain out of proportion, paresthesias or weakness

Tennis Leg

- Why medial gastrocs & not lateral head or soleus?
 - Medial half muscle larger than lateral
 - Fast twitch fibers (soleus slow twitch)
 - Crosses two joints
Tennis Leg

- **Mechanism**
 - Forced ankle dorsiflexion in combination with extended knee

- **Treatment**
 - 48-72 hrs
 - Crutches
 - Ice 3-5 times/day
 - Elevate
 - Compressive dressing
 - 3-14 days
 - Heel lift, WBAT
 - Pain-free, gentle active-assisted ROM
 - 14 days
 - Strengthening exercises as tolerates
 - 3-6 wks
 - Graduated activity
 - When calf strength 90% contralateral, nontender, & normal ROM can return to full participation

33♂ c/o pain top of leg

- Slide-tackle in game last week, severe pain
- Since then, hurts any time moves ankle
- Feels like he can’t straighten knee
- Wants to know if he hurt his ACL

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

25♂ c/o pain top of leg

- No instability knee
- Palpable deformity

Proximal Tibiofibular Joint

- Ogden Classification 1974
 - Type I subluxation 23.3%
 - Type II anterolateral dislocation 67.4%
 - Type III posteromedial dislocation 7%
 - Type IV superior dislocation (usually associated with Tib/fib fx or syndesmotic injury 2.3%)

Proximal Tibiofibular Joint

Anatomy
- Diarthrodial joint
- Joint space communicates with knee in 10% population
- Capsule thicker and stronger anteriorly
- Tibiofibular ligaments
 - Single ligamentous band posteriorly
 - 2-3 anterior ligamentous bands
- Biceps femoris inserts on lateral side of fibula

Function
- Relieve torsional stresses applied to ankle
- Relieve lateral tibial bending moments
- Allows fibula to move distally with weight-bearing

Mechanism of Injury
- Fall on adducted leg with knee flexed & foot plantarflexed
 - Inversion & plantarflexion of foot causes tension on peroneals, EDL, EHL
 - Combined violent contraction of these muscles pulls fibula forward
 - Biceps tendon & LCL relaxed in flexion, lowering resistance to anterior subluxation
- Slide tackle in soccer, knee-boarding

Symptoms
- Acute pain & tenderness at joint
- Aggravated by ankle & subtalar motion
- Can’t fully extend knee
- Transient paresthesias peroneal nerve
- May complain of knee instability when chronic

Physical Examination
- Tender
- Deformity of joint may be visible
- May have gross instability on AP pressure on fibular head

Studies
- X-rays
 - IR 30-90 degrees to maximize tib/fib diastasis
- Fluoroscopy
Proximal Tibiofibular Joint

- **Treatment**
 - **Acute Injury**
 - Closed reduction under anesthesia
 - Knee flexed 90°, foot dorsiflexed & everted followed by direct AP pressure
 - 3 weeks knee immobilizer, light TTWB
 - Protected WB 3 more weeks
 - Quad strengthening whenever pain-free full extension achieved
 - Chronic
 - Open reduction with ligamentous reconstruction (biceps femoris)
 - Failed reconstruction
 - Arthrodesis with partial fibular resection

- **20♂ rugby player c/o chronic leg pain**
 - h/o multiple high ankle sprains, but this is different feeling
 - He never let injuries slow him down much but feels like his ankle is stiff
 - Tenderness to deep palpation mid-distal 1/3 tibia

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

- **20♂ rugby player c/o chronic leg pain**

Tibiofibular Synostosis

- **Etiology**
 - Congenital
 - Acquired
 - Interosseous membrane trauma & resultant hemorrhage

- **Anatomy & Biomechanics**
 - IOM originates from tibia periosteum & angles 15-20° obliquely & distally to insert on fibula
 - Fibula transmits 1/6 weight
 - Widening of mortise must occur for full dorsiflexion of ankle
 - Distal excursion of fibula results in deepening of mortise during plantarflexion
Tibiofibular Synostosis

- **Clinical**
 - Congenital may first become symptomatic in teenage years
 - Acquired cases may report multiple high-ankle sprains
 - Tender over synostosis
 - Pain with weight-bearing
 - Limited motion (dorsiflexion)
 - X-rays diagnostic

- **Treatment**
 - Don’t treat something that doesn’t hurt
 - Conservative Tx
 - Activity modification & NSAIDs initially
 - Cycling to maintain cardio
 - Ankle rehab: strength, proprioception & flexibility
 - Gradual return to running
 - Surgery
 - Excise & irradiate

30yo c/o mass side leg

- Mass gets bigger when works out
- Sometimes he gets some burning on top of foot
- Tender just above lateral malleolus
- Burns in foot when tap there

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

Nerve Entrapment

- **Common Peroneal**
 - Activity-related pain & numbness in peroneal distribution
 - Sharp fibrous origin of peroneus longus
 - Contraction of peroneal muscles combined with plantarflexion/inversion force to foot elicits sx

- **Superficial peroneal**
 - Most common
 - Travels in lateral compartment & pierces fascia 10-12cm above lateral malleolus
 - Purely sensory at this point
 - Provocative tests
 - Passive Plantarflexion/inversion of foot elicits pain or tenderness
 - Tenderness 10cm proximal to lateral malleolus while pt holds foot dorsiflexed & everted
 - Tinel’s sign
Nerve Entrapment

- **Sural Nerve**
 - Posterolateral leg, just posterior to peroneal tendons
 - Lateral calcaneal to ankle & heel, then sensory to lateral border foot & 5th toe
 - Compression by soft tissue bands or ganglia at lateral ankle or foot or point where it exits fascia of leg

Nerve Entrapment

- **Clinical**
 - Sensory distribution
 - Compartment pressures
 - Motor involvement
 - EMG shows delayed conduction velocity
 - MRI may show muscle hernias

Nerve Entrapment

- **Treatment**
 - **Acute**
 - Lateral sole wedge to decrease inversion stress
 - Peroneal muscle strengthening & proprioceptive training to prevent recurrence
 - **Established syndrome**
 - Fasciotomy with neurolysis
 - *Never close fascial defects associated with muscle hernias*

20 yrs field hockey player c/o pain leg

- Never had any problems before
- Came on gradually during Spring training this year
- Hurts more at end of practice & with every step in the evening
- Point tenderness posterior midshaft tibia

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

20 yrs field hockey player c/o pain leg

- XR normal
Stress Fractures

• Epidemiology
 – Incidence
 • Athletes 0.12%
 • Runners 4-15%
 – Location
 • Competitive athletes tibia most common 50%
 • Recreational athlete, metatarsals & pelvis more common
 • If proximal or distal 1/3 → posteromedial compression side
 • Middle 1/3 → anterior tension side
 • Bilateral 11-23%

Stress Fractures

• Risk Factors
 – Females 12x’s risk <Barrow, 1988>
 – Runners Irregular Menses 50% incidence
 – Runners with regular cycle 30%
 – Oral contraceptives protective
 – Narrow tibial width <Giladi, 1987>
 – Change in intensity workout
 – Hard running surface, poor footwear
 – Forefoot varus, hyperpronation, tibia vara

Stress Fractures

• Basic science
 – Repetitive stress
 – Vascular congestion & thrombosis
 – Osteoclastic resorption
 – Periosteal reaction & new bone formation leads to callus
 – Resorption cavities develop in cortex & remodelling begins
 – Cortical hypertrophy is the result

Stress Fractures

• Pathomechanics
 – Muscles fatigue, ↑stress transmitted to bone <Clement,1974>
 – Forceful contraction of muscle stresses bone <Stanitski, 1978>
 – Anterior cortex tibia fxs from repetitive jumping activity, “bow-string”

Stress Fractures

• Other stress fxs in the leg
 – Medial malleolus, from plafond obliquely proximal
 – Fibula, usually just above syndesmosis

Stress Fractures

• Clinical
 – Pain after activity, progresses to pain during activity & finally with ADLs
 – Well-localized tenderness
 – Palpable bump = periosteal thickening or callus (usually sx at this stage)
 – US at fx can elicit tenderness
Stress Fractures

- **Studies**
 - X-ray changes visible at 2-3 weeks
 - Periosteal rxn
 - Scalloping (subperiosteal resorption)
 - Cortical hypertrophy
 - 1/3 of stress fxs dxed by bone scan also have XR abnormalities

- **Stress Fractures**
 - Bone scan positive within 1st week (100% sensitivity)
 - "focal fusiform activity" classic
 - All 3 phases abnormal acutely (2-4wks)
 - Delayed stays abnormal 3-6mos
 - MRI
 - Comparable sensitivity & cost to bone scan with no radiation

- **Stress Fractures**
 - Conservative Tx 93% successful <Orava, 1987>
 - 4-6 wks rest <Clement>
 - NSAIDs
 - Can weight-bear, but no running
 - +/- pneumatic brace <Allen, 2004> showed no benefit
 - Cycling, swimming
 - When pain-free 2 wks can start graduated return to sport
 - 12wks until full activity

- **Stress Fractures**
 - "Dreaded black line"
 - Can treat conservatively, but more prone to nonunion
 - NWB SLC 6-8wks
 - Excision & grafting if not healed in 3-6mos
 - IM nailing allows quicker return to sports, (4mos) & reliable union (3mos) <Varner KL, 2005>
 - Medial Malleolus
 - Internal fixation to prevent displacement <Shelbourne>

25♂ runner pain both legs

- L leg hurt a little last year, but got better in off-season
- Feels fine at beginning of workout but starts hurting 5 minutes into run
- Does not hurt after practice

Stress Fractures

- Examination WNL
- XR, bone scan normal
Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

Compartment Syndrome

Condition in which an elevated tissue pressure exists within a closed fascial space, resulting in reduced capillary blood perfusion & compromised neuromuscular function.

Compartment Syndrome

- **Pathogenesis**
 - Acute
 - Tibia fx or muscle rupture
 - casts & circumferential dressings can contribute
 - Chronic Exertional
 - Etiology unclear
 - Muscle contraction alone causes compartment pressures to ↑ up to 80mmHg
 - Muscle weight ↑’s up to 20% due to ↑ed tissue perfusion with exercise <Fronk J, 1987>
 - Fascia may be thicker & stiffer in affected individuals <Hurschler, 1994>
 - As pressure approaches diastolic BP, microcirculation impeded

Compartment Syndrome

- **Anatomy**
 1. Superficial posterior: Sural N
 2. Deep posterior: Tibial N
 3. Anterior: Deep Peroneal
 4. Lateral: Superficial Peroneal
 5. Fibular origin of FDL can be extensive (>8cm) → subcompartments of deep posterior

Compartment Syndrome

- **Clinical**
 - Acute
 - Pain out of proportion
 - Tense muscle compartments
 - Paresthesias
 - Severe pain with PROM
Compartment Syndrome

- Clinical:
 - Chronic Exertional
 - History of being asymptomatic in off-season
 - Dull aching pain with exercise
 - Paresthesias dorsum or plantar foot (Anterior 60% & deep posterior 20% most common)
 - Ankle weakness/instability with fatigue <Martens, 1984>
 - Distension & or weakness of affected compartments on exam after exercise
 - 95% bilateral <Reneman, 1975>
 - Fascial defects 40% cases versus 5% in normal

Compartment Syndrome

- Stryker
 - Acute
 - Compartment pressures
 - only needed if unconscious, need continuous monitoring, or equivocal presentation
 - >30mmHg, within 30mmHg of DBP
 - Foot position affects measurements
 - Chronic Exertional
 <Pedowitz R, 1990>
 - Pre-exercise >15mmHg
 - 1-minute postexercise >30mmHg
 - 5-minute postexercise >20mmHg

Compartment Syndrome

- MRI
 <van den Brand, AJSM, 2005>
 - 42 patients bilateral CECS anterior compartment
 - Compared SN/SP
 - compartment pressures: 35mmHg after exercise
 - near-infrared spectroscopy: measure of tissue oxygen saturation
 - MRI: % T2-weighted signal in region of interest

Compartment Syndrome

- Treatment
 - Acute
 <Mubarak & Owen, 1977>
 - Emergent fasciotomy
 - Anterolateral:
 - midway between tibia & fibula
 - Short transverse incision over septum
 - Release 1cm anterior & 1cm posterior to septum
 - Superficial peroneal nerve
 - Posteromedial:
 - 1cm medial to tibia
 - Saphenous vein & nerve
 - Long incisions, release all compartments, do not close

Compartment Syndrome

- Treatment
 - Chronic Exertional
 <Schepsis, 1993>
 - 98% with anterior, 65% with posterior
 <Howard, 2000>
 - 79% pts satisfied, average 68% relief on pain scores
27♂ recurrent leg cramps when jogging

- Leg cramps start 5 minutes into workout
- Leg starts to feel cold & tingly
- Goes away if he stops to rest
- No DP pulse if passively dorsiflex ankle with knee extended

Differential Diagnosis

- Effort-induced DVT
- Stress Fractures
- Compartment Syndromes
- Popliteal Artery Entrapment
- Shin Splints
- Tennis Leg
- Proximal Tib/fib joint pathology
- Tib/fib synostosis
- Nerve Entrapment

Popliteal Artery Entrapment

- **Epidemiology**
 - Accounts for <1% of entities causing stenosis or occlusion of popliteal artery
 - Young males most common (94% are <40yo)
 - Bilateral in 25% cases

- **Why worry?**
 - Permanent arterial damage can occur if left untreated
 - Reports of progressive thrombosis & leg ischemia exist

Popliteal Artery Entrapment

- **Classification** <Repessa, 1990>
 1. Popliteal artery deep to medial head gastrocnemius (63% cases)
 2. Artery cuts across medial head gastrocnemius, dividing it into two origins (23%)
 3. Passes deep to popliteus muscle (7%)
 4. Anatomic abnormality uncategorized

Popliteal Artery Entrapment

- **Classification** <Levien, 1999>

- Classification: Type I, Type II, Type III, Type IV
Popliteal Artery Entrapment

- **Symptoms**
 - Vague symptomatology months or years
 - Young athlete with intermittent claudication:
 - Calf pain
 - Cramping
 - Coolness in leg/foot
 - Paresthesias
 - Usually unilateral
 - Can be present with walking & relieved with running or vice versa
 - Worse when elevate leg, relieved in dependent position
- **Clinical**
 - Obliteration pedal pulses with active plantarflexion or passive dorsiflexion with knee in extension (can occur in up to 50% controls)
- **Arteriography**
 - Classically medial deviation of artery at level of medial head
 - Stenosis & occlusion demonstrated with provocative maneuvers
 - +/- Poststenotic dilatation

Summary

- <Clanton TO, 1994>
 - 150 patients with leg pain caused by exercise
 - Chronic Exertional Compartment Syndrome 33% → Fasciotomy
 - Stress fractures 25% → PWB or IM nail
 - Muscle strains 14% → RICE
 - Medial Tibial Stress Syndrome 13% → modify activity/footwear... surgery
 - Neuropathy 10% → modify activity, strengthening... neurolysis
 - Venous disease 4% → Anticoagulation
 - Spinal stenosis 1%

- Proximal tib/fib pathology → reduce/immobilize... reconstruct
- Popliteal artery entrapment → surgical release
- Tibiofibular synostosis → activity modification... excise

Thank You